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SUMMARY
Recent advances inmicrocircuit analysis of nervous systems have revealed a plethora of mutual connections
between inhibitory interneurons across many different species and brain regions. The abundance of these
mutual connections has not been fully explained. Strikingly, we show that neural circuits with mutually inhib-
itory connections are able to rapidly and flexibly switch between distinct functions. That is, multiple functions
coexist for a single set of synaptic weights. Here, we develop a theoretical framework to explain how inhib-
itory recurrent circuits give rise to this flexibility and show that mutual inhibition doubles the number of cusp
bifurcations in small neural circuits. As a concrete example, we study a class of functional motifs we call
coupled recurrent inhibitory and recurrent excitatory loops (CRIRELs). These CRIRELs have the advantage
of being bothmulti-functional and controllable, performing a plethora of functions, including decisions,mem-
ory, toggle, and so forth. Finally, we demonstrate howmutual inhibitionmaximizes storage capacity for larger
networks.
INTRODUCTION

There are two interesting threads of inquiry when considering

recurrent neural networks in a biological context. The first is

the preponderance of connections between inhibitory interneu-

rons in real brain networks.1–6 These mutual connections are

found across species from mammals4,5 to simple organisms

such as flies6 all the way to humans.1 The second thread hints

at the reason that these neural connections are found so ubiq-

uitously, that is, recurrent networks are more flexible.7–15 All or-

ganisms need this flexibly to rapidly respond to their environ-

ment, and this is best accomplished by having a single

network perform multiple functions7–11,16–21 without needing

to rely on synaptic plasticity to change between func-

tions.7,12,17–22 This rapid flexibility has been well studied from

a dynamic system’s perspective7,12,17,23 and from a biological

perspective.3,13,14,16,17,22,24,25

It has been hypothesized that a key component of this flexi-

bility is the recurrent nature of neural connections.12,14,23,26

Often, the focus of recurrent structures is on mutual excita-

tion8,15,27–30 or feedback inhibition,5,8,28,31–36 and the role of

mutual inhibition tends to receive less attention (the term ‘‘recur-

rent’’ has been used interchangeably across literature – see Fig-

ure 1A for how it is defined in this study). Past computational
iScience 28, 111718, Febru
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studies often focus on slower mutual inhibitions role in central

pattern generation.37–39 However, recent advances in multicel-

lular recordings32,40–43 and simulation studies,14,41 has given

rise to new evidence that suggests that faster mutual inhibition

between inhibitory interneuron plays amore crucial role than pre-

viously thought.

First, it has been widely reported that inhibitory neurons in-

crease the variability of a network,5,14,16,44–47 and supporting ev-

idence from connectome studies revealed that mutual inhibition

is abundant and formed locally,6,40,43,44 possibly performing

local computations.5 Second, evidence shows that there are

functional differences between feedback and mutual inhibition.

For example, feedback inhibition is composed of an intercon-

nected pair of excitatory and inhibitory neurons, which balances

the network,35,36,48 allowing it to approximate an arbitrary motor

sequence12 and are useful in gain control. On the other hand,

recurrent inhibition (either feedback or mutual inhibition) in-

creases the number of basins of attraction,8,39 allowing the

network to perform functions such as winner-take-all deci-

sion,8,39,49–51 bistable perception,41,42 oscillations,23,26,37,52,53

associative memory14,54 and grid formation.53,55 Strikingly, we

show a wide variety of these computations can be performed

by introducing mutual inhibition into any network. As we will

show, that networks with mutual inhibition are able to rapidly
ary 21, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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Figure 1. Motifs and statistical analysis of

dynamical diversity

(A) Definition of the terms ‘‘recurrent’’ circuits,

‘‘mutual’’ excitation/inhibition and ‘‘feedback’’ in-

hibition used in this article. Synaptic weights used

in part of the results are assigned based on its pre-

and post-synaptic neurons, hence there are four

types of weights: excitatory-to-excitatory ðgeeÞ,
excitatory-to-inhibitory ðgeiÞ, inhibitory-to-inhibi-

tory ðgiiÞ and inhibitory-to-excitatory ðgieÞ.
(B) The motif labeled ‘‘CRIREL’’ is the definition of

CRIREL circuits. The rest of the motifs are indexed

by alphabets in no particular order. Blue repre-

sents excitation neurons and red inhibition.

(C) Parameter sweep for equilibrium points in

different motifs across some parameter space. In

this graph, 1 equilibrium point is in blue (EP = 1), 2

is green (EP = 2), 3 is yellow (EP = 3) and 4 is green

(EP = 4).

(D) Parameter sweep for CPGs in different motifs

across some parameter space.

(E) Parameter sweep for motifs A and B. For motif

B (left), the relevant parameters concerning quasi-

decision making and switch are gee and gie. For

motif A (right), the relevant parameters are gee and

gii . Blue represents regions where the circuit can

perform switching, coral-red represents quasi-

decision making, red represents decision-making,

and white represents no functions present. The

purple region is the regime in which the system

can perform both functions simultaneously.
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switch betweenmultiple functions without changing the synaptic

weights. This result, along with supporting connectome studies,

all point to the idea that mutual inhibition is crucial in expanding a

network’s functional repertoire.

At last, we note that a network’s functional capacity is not

determined solely by the number of synapses.26,44,48,56 In partic-

ular, while each type of synapse increases the number of poten-

tial computations a network can have, the network is not neces-

sarily flexible if it cannot seamlessly transition between different

functional modes by modulating the parameters. Whether the

network is capable of easy transitions is highly dependent on

the underlying bifurcation, which is the phenomenon of switching

between behavioral characteristics through the change of model

parameters.26,57–59 Specifically, networks near complicated bi-

furcations are computationally useful,26 because only networks

near a bifurcation have non-trivial dynamics.12,26,59 In short,

one can quickly and precisely control the neural circuit opera-

tions by controlling the nearby bifurcation.

Given the lackof attention tomutual inhibition, weset out to sys-

tematically model its effect on a network’s functionality and dy-

namics. We hypothesize that mutual inhibition can increase the

flexibility of a network by increasing the number of bifurcations

the network is near. In particular, it can introduce new functions

while subsuming the functions originally present in the network.

To further illustrate this argument, we investigated the dynamics
2 iScience 28, 111718, February 21, 2025
of a family of recurrent circuits we dubbed

CRIREL (CoupledRecurrent Inhibition and

Recurrent Excitation Loop). This type of
structure is used across literature regarding a myriad of phenom-

ena, such as decision-making and deviance detection,4,60 yet the

dynamics of this structure require further systematic studies.

To showcase the effect of different recurrent structures on a

circuit’s dynamics, we first conducted a series of statistical ana-

lyses. Based on these statistical results, we then delve into a

detailed dynamical analysis of the CRIREL circuit. Our analysis

shows how, by including mutual inhibition, even a small

4-neuron circuit is capable of rapidly and flexibly switching be-

tween a wide range of computations. Finally, we extend our

study to a large random network and show that mutual inhibition

is critical for increasing the entropy of its working memory state,

implying that mutual inhibition diversifies the dynamical land-

scape of networks.

RESULTS

Effects of recurrent structures on the complexity of
circuit dynamics
We compared several circuit architectures to investigate how

different recurrent structures contribute to a circuit’s dynamics

(Figures 1A and 1B). The first metric we employed to charac-

terize the diversity of circuit behavior was the number of equilib-

rium points, that is, steady states in firing rate. If the circuit con-

tains multiple equilibrium points, it is more likely to lead to
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complex activity patterns in response to different inputs, an indi-

cation of the circuit’s computational ability.

We begin with the CRIREL circuit, which contains all three

recurrent structures, then remove these connections one at a

time. Motif A contains all the recurrent structures contained in

the other motifs (Figure 1A). Motif B does not contain mutual in-

hibition, and motif C does not have mutual excitation. In motifs D

and E, the feedback inhibition loop is broken – in motif D, feed-

back inhibition is removed, and in motif E, feedback excitation

is removed. Motif F is a pure feedforward structure that was cho-

sen as arbitrarily, and motif G is a feedforward structure that

forms a single loop.

For one given motif, we performed a parameter sweep over

different synaptic weights and bias currents, totaling up to

18900 parameter settings. Each setting is simulated once, where

random perturbations are applied to the neurons to encourage

the stochastic exploration of the phase space throughout the

trial. Given sufficient intervals between the perturbations, stable

equilibrium points should emerge as ‘‘clusters’’ in the firing rate

trajectory of the neurons. Therefore, we clustered the entire tra-

jectory using k-means, and the number of clusters within that

parameter setting is determined via the elbow method (see

STAR Methods for detailed criteria).

The results show thatmotif A has the largest parameter regime

in which the system is not monostable, i.e., the number of equi-

librium points exceeds 1 (Figure 1C; monostable in blue).

Furthermore, motifs that have mutual inhibition (motifs A, D, E)

have parameter sets with equilibrium point counts larger than

two, while those with either only mutual excitation or only mutual

inhibition have at most counts of two, and feedforward motifs

have no bistability at all. In contrast, the presence or absence

of feedback inhibition does not make such a large difference in

the total number of states possible (albeit feedback can change

the parameter regimes these states can be found in). Thus, one

can conclude that the combination of mutual excitation and

mutual inhibition is the main driver of the multi-state parameter

regime but not feedback between the two mutually connected

subnetworks.

While the first metric shows the number of equilibrium points in

the network, it does not reveal whether other stable structures

are possible within the network, such as oscillation given con-

stant input. Therefore, the second metric we employed tested

whether central pattern generators (CPG) are present in the

network. We count the number of distinct inter-spike intervals

(ISI) within the inhibitory neurons, and if the number of ISIs is

greater than 1, that implies that there is a CPG (see STAR

Methods for more details). This analysis shows that CPGs are

only found in A, B, and C – the ones that contain feedback inhi-

bition (Figure 1D).

In summary, we illustrated the functional differences between

mutual and feedback inhibition – mutual inhibition increases the

number of equilibrium points in the network, while feedback inhi-

bition allows the network to oscillate when given constant input.

Functional differences between feedback and mutual
inhibition
The statistical results indicate that mutual inhibition increases

the dynamical states, but does not explain the mechanism
behind it. Hence, here we consider an explicit example that com-

pares feedback inhibition with mutual inhibition, and compare

motif A with motif B. Specifically, we compared the two motifs’

ability to perform different functions within some relevant param-

eter regime.

Motif B contains mutual excitation, which allows it to perform a

switch-like function, where some brief positive current pulse can

transfer the system to the ON state, and a negative pulse can

turn it off. Motif B also has feedback inhibition, which skews the

basin of attraction oneway, thereforemaking one of the excitatory

neurons fire faster than the other, performing a quasi-decision like

function. However, these two functions cannot coexist within the

circuit (Figure 1E, left panel). If we add recurrent inhibition to the

circuit, however, this problem can be resolved. Consider motif

A, which has mutual excitation, feedback inhibition, as well as

mutual inhibition. This gives a large parameter regime in which

motif A contains both functions simultaneously (Figure 1E, right

panel). Here, we stress that even though motif A has more synap-

ses, it is motif B (with mutual inhibition) that is more functional.

Therefore, the presence of mutual inhibition can add more func-

tions to the underlying neural network.
Dynamics of coupled recurrent inhibitory and recurrent
excitatory loops circuits
All the statistical analyses above point to mutual inhibition is

crucial in expanding the functional repertoire of a network. As

such, we will focus on Motif A (i.e., CRIREL) and mutual inhibi-

tions effects on coexisting computations. However, to have a

better grasp on the functions CRIREL circuits actually bring

about, we must look into its dynamics. To this end, we reduced

the 4-dimensional CRIREL circuit into a 2-dimensional reduced

model, with each of the recurrent circuits compressed into 1

dimension.

t
dE

dt
= k�e � aeE +E3 � eaieI (Equation 1)

t
dI

dt
= k�i � aiI � I3 � eaeiE (Equation 2)

Here, ae, ai, k
�
e, and k�i represent the parameters associated

with the cusp bifurcations, while eaie and eaei denote the coupling

strengths between the subsystems. A detailed derivation of the

reduced model can be found in the Supplementary Note.

Without loss over generality, one can consider a de-dimen-

sionalized form:

t
dE

dt
= a1 � a2E +E3 � I (Equation 3)

t
dI

dt
= b1 � b2I � I3 � E (Equation 4)

Conceptually, it can be understood as preserving the dimen-

sions that are important to the dynamics of interest by consid-

ering the properties of the two mutual connections. Here, a1
and b1 correspond to the baseline activity level, while a2 and

b2 roughly represent the mutual excitation and mutual inhibition

respectively.
iScience 28, 111718, February 21, 2025 3



Figure 2. The reduced model of the CRIREL circuit

(A) The phase diagrams of the mutual excitation (left) and inhibition loop (right) when decoupled from one another. The black curves are nullclines and the spots

represent equilibrium points. The green dashed line shows the direction in which interesting dynamics lie on (it is only approximate for the inhibitory case).

(B) When weakly coupled together, the CRIREL circuit can be reduced to two dimensions. The blue curve is the nullcline of the mutual excitation loop, the red is

the nullcline of mutual inhibition, and the black dots are stable equilibria.

(C) By adjusting the four parameters a1, a2, b1 and b2, the reduced model will change into different configurations, each of them corresponding to different

functions. Demonstration of rapid flexibility using bias currents. All functions coexist for a single set of synaptic weights, namely gee = gii = gei = gie = 70 mS.

(D) The plot of excitatory and inhibitory bias currents. Each Dot shows the location in bias current parameter space for each function.

(E) The plot of input magnitude excitatory and inhibitory for each function.

(F) Demonstration of the toggle function using square pulses into the excitatory subsystem.

(G) Demonstration of the synchronized CPG function. Note that there is no input, only bias current.

(H) Demonstration of the toggle-decide function using pulses into the inhibitory subsystem.

(I) Demonstration of the anti-synchronized CPG, which again has no input into the network.

(J) Coincidence detection with input into both excitatory and inhibitory subsystems.

(K) Anti-coincidence detection using input into both subsystems.
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The simplest spiking neuron one can consider is a leaky inte-

grate-and-fire (LIF) neuron, a neuron that integrates inputs and

spikes when it reaches a threshold(see Table 1 for paramters

used in this study). LIF neurons act a class 1 excitable neuron,57

we can approximate each neuron’s firing rate as a Wilson-

Cowen26,61 type firing rate model, with each neuron’s firing

rate as e1, e2, i1 and i2. This form assumes amonotonic non-line-

arity. Since mutual excitation tends to synchronize, the dimen-

sion of e1 � e2 is less important than e1 + e2 if the coupling is

much weaker than the mutual connection strength, where ei rep-

resents the firing rate of the excitatory neuron i, which is denoted

as Ei. On the other hand, mutual inhibition desynchronizes,

therefore i1 + i2 is less important than i1 � i2 when the coupling

is weak. Similarly, ij represents the firing rate of inhibitory neuron

j, which is denoted as Ij. Hence, by retaining the dimensions of

e1 + e2 and i1 � i2 only, we can gain a geometrical understand-

ing of how the system operates, which in turn sheds light on

the potential computations recurrent circuits can perform

(Figure 2A).

The resulting reduced model (Figure 2B) can be visualized

using the coordinates Eze1 + e2 and Izi1 � i2. The blue and

red lines represent the nullclines of E and, I respectively. Note

that both nullclines are of a cubic form, which is the normal

form of a cusp bifurcation, thereby proving that mutual connec-

tions do indeed add cusp bifurcations to the circuit. Since there

are two cubic functions, we know that this system has a double-

cusp bifurcation. There are four free parameters in this reduced
4 iScience 28, 111718, February 21, 2025
model, which come from complicated nonlinear mappings of

the original neuronal and bias current parameters. For physical

intuition, a1 and b1 are nonlinear mappings of structural param-

eters of the neurons, such as capacitance, time constant, or

synaptic weights. a2 and b2 are mappings from the bias cur-

rents into the circuit. These parameters allow the cubic func-

tions to change shape as well as translation, which gives rise

to many different phase diagrams (Figure 2C). These phase di-

agrams correspond to different ‘‘modes’’ of the circuit, in which

it performs different functions. We will go over all of the func-

tions we discovered later in discussion, but note that this is

by no means a complete list of what the circuit is capable of

doing.

Rapid flexibility using bias currents to control
functionality
Next, we consider a network flexible if multiple functions coexist

for a given set of synaptic weights. We are able to reproduce all

functions listed in (Figures 2D and 2E) with a single network with

a single set of synaptic weights. For demonstration purposes, we

chose the synaptic weights gee = gii = gei = gii = 70 mS.

Strikingly, we are able to use bias current alone to switch be-

tween various functions (Figure 2C). Importantly, this endows our

network with a set of 6 unique functions (Figures 2F–2J) that can

easily and flexibly switched between by modulating bias current

and input type. The six functions are toggling (Figure 2F),

synchronized CPG (Figure 2G), toggle-decide (Figure 2H),
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anti-synchronized CPG (Figure 2I), coincidence detection (Fig-

ure 2J), and anti-coincidence detection (Figure 2K).

A nice consequence of this rapid flexibility is to change the

functionality on a timescale corresponding to the membrane

time constant (here 20 msec). It is worth stressing that this

does not require a slower change in synaptic weight and that

every function is easily accessible from the other functions.

The functions of CRIREL circuits include rudimentary ones

that rely more heavily on mutual excitation, such as switch, tog-

gle, and synchronized CPG; it also includes ones in which com-

putations are mainly performed in the mutual inhibition loop,

such as decision-making and anti-synchronized CPG. Building

from these concepts, we can also have computationally inter-

esting functions, such as working memory, threshold-based

filtering, and timing-based decision-making.

Computations in the excitatory subsystem
Switch

We first demonstrate one of the simplest computations, which is

a switch-like function (Figure 3A). An intuitive understanding of

switching and its behavior is already described in previous sec-

tions. Here we demonstrate how to comprehend this function

geometrically using the reduced model. The reduced model for

the switch has only two stable equilibrium points separated by

a saddle equilibrium (Figure 3B). The simulation begins at the

equilibrium point where all the neurons are silent, i.e., the OFF

state. When a brief positive current pulse is given to one or

both of the excitatory neurons, the E-nullcline shifts upwards,

annihilating the OFF state. Therefore, the system transits to the

remaining equilibrium point, i.e., the ON state, and remains there

even as the input is removed and the E-nullcline returns to its

original position. This means that the circuit will continue firing

even in the absence of input. When a negative current pulse is

applied, the opposite happens, and the system returns to the

OFF state. This shows that the circuit is bistable. We see that

the reduced model is consistent with the intuitive explanation

given above (Figure 3B). Moreover, we tested that this switch

into the upstate was present for a broad range of potential input

stimuli (Figure 3C).

Computations in the excitatory subsystem with
feedback inhibition
Toggle

A function that is similar to a switch is toggle, except that it can

be turned off by a positive current pulse instead of a negative

pulse. We can visualize this by plotting the voltage traces of

one of the excitatory neurons (which are synchronized) and

one of the inhibitory neurons (Figure 3D). The first pulse causes

the system to go to the ON state, and the firing rate of the inhib-

itory neurons is insufficient to inhibit the excitatory loop. Howev-

er, when a second identical pulse enters the system, the firing

rate of the excitatory loop increases, and concurrently the inhib-

itory loop. This extra push is enough for the inhibitory neurons to

turn off the excitatory neurons, thus returning the whole system

to inactivity.

Again, we can gain insight by examining the phase portrait of

the system. The simple shifting mechanism of the switch system

no longer applies here. As the impulse current excites the excit-
atory loop and consequently the inhibition loop, the inhibitory

response deepens, causing the inhibitory nullcline to change

its shape (Figure 3E). This in turn causes both the ON and OFF

states to annihilate, and the system goes from 5 equilibrium

points to one unstable spiral node. This means that for a brief

amount of time, there exists a limit cycle and the system’s state

rotates. When the impulse input ends, the inhibitory system re-

laxes and the 5 equilibrium points return, but by that time the sys-

tem is already trapped in the ON state. The second pulse repeats

the process and rotates the system yet again, allowing it to return

to the OFF state. We also examine the required amplitude and

duration of stimuli required to toggle the system (Figure 3F).

Interestingly, for very long duration the system may rotate a full

rotation, rather than a half rotation. This will cause the system

not to toggle for long duration stimuli.

Synchronized central pattern generator

The presence of a toggle implies that the circuit is also capable of

sustaining periodic oscillations, that is, capable of becoming

CPGs. Note that if the impulse current is changed into a constant

bias current, the system will repeat the process of toggling over

and over again, thus undergoing a synchronized bursting

behavior (Figure 3G). The phase diagram of synchronous CPG

is the limit-cycle mode (Figure 3H). Moreover, we showed that

inhibitory bias current can tune the network over a wide oper-

ating frequency (Figure 3I).

Computations in the inhibitory subsystem
Decision making

Switch, toggle and synchronous CPG rely heavily on the dy-

namics of the mutual excitation loop. Decision-making, on the

other hand, is mainly due to mutual inhibition. For a decision

network, when two inputs are injected into the neurons E1 and

E2, the larger of the two inputs will ‘‘choose’’ their corresponding

inhibitory neuron, thus preventing the other inhibitory neuron

from firing (Figure 4A). Logically, this is the exact counterpart

of the switch system, the difference being that the nonlinearity

now lies in the I-nullcline instead of the E-nullcline. While inputs

shift the E-nullcline either up or down in the switch or toggle

phase diagram, it shifts the inhibitory neuron either left or right

in this case, hence forcing the system to decide between the

two equilibrium points. Geometrically, this corresponds to

‘‘rotating’’ the nullclines of the synchronized CPG by 90� (Fig-

ure 4B). To quantify the performance of decision-making, we

examined the accuracy and reaction time of the circuit (Fig-

ure 4C). The results are consistent with decision-making net-

works containing two competing populations of excitatory

neurons – as the input becomes more coherent, accuracy in-

creases and reaction time decreases.

Anti-toggle (anti-synchronized toggle)

Just as decision-making is the counterpart of the switch func-

tion, anti-toggle is the counterpart of toggle. By taking advantage

of the reduced model, we can rotate the nullclines by 90� to

generate an anti-toggle from toggle. This is achieved by swap-

ping the parameters of the excitatory and inhibitory systems.

As with the case of toggling, in this mode, the excitatory neurons

of the excitatory sub-circuit can be turned on and off by positive

input pulses. The difference is that now when one inhibitory

neuron is turned off, the other one automatically turns on
iScience 28, 111718, February 21, 2025 5



Figure 3. Switch, toggle, and synchronous CPG

(A) Switch voltage traces. Top row: the voltage trace of neuron E1. Bottom row: the current input into E1. The Roman numerals represent different phases of the

input and correspond to the Roman numerals shown in panel (b).

(B) Switch phase diagrams and schematics of neural activity. Top row: switch function phase diagram. The green dot represents the state of the system. Bottom

row: Schematic diagram of the relative activity of each neuron during different time periods. Blue represents excitation and red inhibition. The darker the color, the

higher the activity.

(C) Inputs that induce a switch. A parameter sweep over the duration and amplitude of the input pulse that induces a switch into the upstate. Blue represents

stimuli that induce a switch, while gray represents those that do not.

(D) Toggle voltage traces. Top row: the voltage traces of E1 (in black) and I1 (in green). Bottom row: the current given to E1. The Roman numerals correspond to the

Roman numerals shown in panel (E).

(E) Toggle phase diagrams and schematics of neural activity. Top row: toggle function phase diagram. Bottom row: Schematic diagram of the firing rates of each

neuron during different time periods.

(F) Inputs that induce a toggle. A parameter sweep over the duration and amplitude of the input pulse that toggles between the upstate and downstate. Blue

represents stimuli that induce a switch, while gray represents those that do not.

(G) synchronous CPG voltage traces. The rows are identical to those of (D). Here, however, the current into E1 is changed from pulses into a constant input. The

Roman numerals arranged in a loop means that the four phases occur repeatedly.

(H) sCPG phase diagrams and schematics of neural activity.

(I) ISI of inhibitory spikes. Parameter sweep over the inhibitory bias current, and its effect on the period of the CPG.
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(Figures 4D and 4E). This function is extremely robust, as it works

in a wide range of parameters (Figure 4F).

Asynchronized central pattern generator

Similar to how toggle gives rise to synchronized CPGs, we can

do the same for anti-toggle to an anti-synchronized CPG. by

changing the current pulses into a constant bias. This change

will not directly yield anti-synchronized CPGs, since a constant

bias would be reinforcing the system to stay within the same
6 iScience 28, 111718, February 21, 2025
equilibriumpoint. However, if we introduce timescale separation,

e.g., mechanisms such as slow GABA synapses, calcium dy-

namics, and second-messenger systems, the circuit can oscil-

late. We can visualize this by taking advantage of a limit cycle

in the reduced system (Figures 4G and 4H). Again, we examined

how the inhibitory bias current controls the operating frequency

of the CPG (Figure 4I), and showed that it operates over a wide

range of frequencies.



Figure 4. Decision-making and asynchronous CPG

(A) Decision-making voltage traces. Top row: the voltage traces of I1 (in black) and I2 (in green). Bottom row: the current given to I1 (in black) and I2 (in green). Here,

E1 and E2 are given constant bias currents to maintain the decision after the input is removed.

(B) Decision-making phase diagrams and schematics of neural activity.

(C) Psychometric function of decision-making. As the input difference between the two inputs increases, the accuracy (black) increases, and the reaction time

(gray) decreases. The error bar for the reaction time represents its standard error.

(D) Anti-toggle voltage traces.

(E) Anti-toggle phase diagrams and schematics of neural activity.

(F) A parameter sweep over the duration and amplitude of the input pulse that anti-toggle. Blue represents stimuli that induce an anti-toggle, while gray represents

those that do not.

(G) Asynchronous CPG voltage traces.

(H) Asynchronous CPG phase diagrams and schematics of neural activity.

(I) ISI of inhibitory spikes. Parameter sweep over the inhibitory bias current, and its effect on the period of the CPG.
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Computations in the coupled recurrent inhibitory and
recurrent excitatory loops system
Working memory

The situation described above complicated when the bistability of

the excitatory sub-system is combined with the decision-making

of the inhibitory sub-system. Since theONstate exists, thismeans

that the decision can be remembered even after the input is with-

drawn because of the excitatory sub-system. When receiving

strong input, the excitation sub-system enters the ON state asym-

metrically. One of the excitatory neurons will have higher firing

rates, thus allowing its neighboring inhibitory neuron to fire and

inhibit the other one. Furthermore, the feedback inhibition strength

is not strongenough to turn the excitatory sub-systemoff, thus the

system ‘‘remembers’’ the input (Figure 5).
There are two protocols to change thememory currently being

maintained in the system. One can clear the system with a reset

signal and the system will return to rest (Figure 5A). The memory

can also be overwritten directly (Figures 5B–5D).

The analysis of this system is identical to the decision-making

system, except that there could be 4 equilibrium points (Fig-

ure 5E). It can indeed be confirmed that this nullcline configura-

tion is present in the full CRIREL system, where the inhibitory

neurons can either be both on (i.e., (1, 1)), one on and one off

(i.e., (1, 0) or (0, 1)) or both off (i.e., (0, 0)). Thus, this system is

capable of forming a working memory system with 2-bit mem-

ory. This is a perfect example of how simple functions such as

decision-making and switching can combine to yield more inter-

esting and useful functions.
iScience 28, 111718, February 21, 2025 7



Figure 5. Working memory

(A) Voltage trace. This circuit stores a ‘‘two bit’’

signal in working memory, i.e., (1,1), (1,0), (0,1),

and (0,0), corresponding to (I1 on, I2 on), (I1 on, I2
off), (I1 off, I2 on), (I1 off, I2 off). This can be seen in

the top two rows of the graph, showing the voltage

traces of I1 and I2. The bottom two rows are the

inputs to the four neurons.

(B–D) Switching memory without reset.

(B) Switching from 1,0 to 0,1.

(C) Switching from 0,1 to 1,1.

(D) Switching from 1,1 to 0,1.

(E) Working memory phase diagrams and sche-

matics of neural activity. Top row: phase diagram.

Bottom row: Schematic diagram of the neural

activity.
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Threshold-based filtering

The capability of making decisions allows CRIRELs to be utilized

in many different ways, including useful functions such as

creating a safety net for hyperactivity. If we allow the CRIREL cir-

cuit to take on asymmetrical parameters (Figure 6A, left) of mem-

brane and synapse, the circuit can become a low-pass filter in

terms of amplitudes, where small inputs are remembered by

the circuit (working memory like), and larger ones terminate the

bistability (toggle like) (Figure 6B). This computation is possible

precisely due to the presence of asymmetries in the network.

When one of the excitatory neurons receives a small input, since

I1 has stronger synaptic weights, I1 will be chosen and thus

inhibit I2. However, when the input is sufficiently large, I2 has

smaller capacitance and time constants than I1, and therefore

will be excited faster than I1, thus winning the decision. The feed-

back inhibition from I1 is weak, therefore when I1 is chosen, it

does not affect the network’s bistability; however, the feedback

inhibition from I2 is strong, therefore whenever I2 is chosen, the
8 iScience 28, 111718, February 21, 2025
network shuts down. Hence, the circuit

serves as a gateway that filters out inputs

that are too large, which could be poten-

tially useful for preventing epilepsy. The

threshold of the circuit can be adjusted

by manipulating the bias current of I1
(Figure 6C).

Timing-based detection

Aside frommaking decisions based on the

magnitude of the input, what is perhaps

even more intriguing is detecting the rela-

tive timing of inputs (Figures 6D and 6E).

Even a sub-millisecond difference be-

tween the inputs is sufficient for the

network to perceive. Timing-based detec-

tions can be accomplished if we allow suf-

ficiently strong feedback inhibition, as we

did in toggling. Under this condition,

two modes are allowed: the coincidence

detection mode (Figure 6D) and the anti-

coincidence detection mode (Figure 6E).

In the anti-coincidencemode, the network

will choose whichever input came first but
will turn off completely if inputs arrive at the same time. In the coin-

cidence mode, the network will only fire if the inputs arrive simul-

taneously (Figure 6E). Note that for these twomodes, an additional

neuron is added to the CRIREL circuit that combines the output of

E1 and E2 (Figure 6A, right). However, this extra neuron is only

added for the sake of having amore clear-cut output. The compu-

tation for these two modes is still done within the CRIREL circuit

itself.

Here, coincidence is controlled primarily by mutual excitation.

The synaptic input is sufficient to turn the system on when both

inputs arrive at the same time, but if there is a delay in the system,

then the system will not fire. Conversely, the anti-coincidence

system takes advantage of the toggle like dynamics, where it

turns the system off if and only if both inputs arrive simulta-

neously. Otherwise, the inhibitory neurons do not fire with suffi-

cient strength to turn the system off. Coincidence has a narrow

range of operation (Figure 6F) because it relies on a more deli-

cate balance between the inhibitory and excitatory subsystems.



Figure 6. Threshold and timing based deci-

sions

(A) Circuit motifs for threshold-based filtering (left)

and timing-based detection (right). The asymme-

tries of the parameters are shown schematically in

the diagram: thicker lines represent larger weights,

and vice versa.

(B) Voltage traces of threshold-based filtering.

The top three rows show the voltage traces of

E2, I2, and I1, and the bottom row shows the

injected current into E1. Here we inject neuron

E1 with different pulses of increasing amplitude.

(C) Maximum amplitude of input that passes

the filter as a function of bias into I1. The steps

are discrete because the input we used is

discrete.

(D)Timing-baseddetection,coincidencemode.The

top row is the voltage trace for the output neuron.

Thebottomrow is the input forE2 (inblack)andE1 (in

green). Since the timing difference between the

input is small (5 ms), for visual demonstration the

difference is exaggerated.

(E) Timing based detection, anti-coincidence-

mode. The top row is the voltage trace for theoutput

neuron. The bottom row is the input for E2 (in black)

and E1 (in green). (f-g) A parameter sweep for both

coincidence (F) and anti-coincidence (G) over both

amplitude of signal and timing difference. Blue

represents the existence of the function, while light

gray represents its absence.

iScience
Article

ll
OPEN ACCESS
On the other hand, anti-coincidence operates over a much

broader range of parameters (Figure 6G).

Memory in large network
So far, we have explicitly explained howmutual inhibition adds a

cusp bifurcation to the circuit, which allows the circuit to perform

various functions. Here, we extend this argument to large

random networks. We focused on the function of working mem-

ory in particular, as working memory requires the use of both on-

off switches (excitatory cusps) as well as decision-making (inhib-

itory cusps). We showed that an increase in mutual inhibition

strength allows the network to have a wider variety of memory

states. However, other functions that are present in the

CRIREL circuit can also be reproduced in the large network as

well (see Figure S3).

The randomnetwork consists of 100 neurons, 75 excitatory and

25 inhibitory, where each connection has a 50 percent probability

of being present (Figure 7A). gie and gii are varied from 0 to

approximately 30 ðmSÞ. For each parameter set, the excitatory

neurons of the network are given random current pulses, and

after the stimulation stops the network relaxes into a steady

state. Since the stimulation is random, each time the steady state
iSc
might be identical or different, and this is

repeated 100 times per parameter set.

Each steady state is recorded as a

‘‘word,’’ where different words represent

different steady states (Figure 7B; see

STARMethods). The entropy for the distri-

bution of the words across 100 trials,
Hword, is calculated for the various parameter sets, which reflects

how diverse the steady states are (Figure 7C).

For the same gie value, Hword increases as gii increases

(Figures 7C and 7D). To understand the reason behind this, we

turn to two other entropy measures, Hsymbol and Hbinary (Fig-

ure 7B). Simply put, Hsymbol measures how diverse the firing

rate across the population is, for a single trial. If the activities of

all neurons are high (Figure 7D left) then there are not a lot of sym-

bols available to form a word, hence Hsymbol would be low and

consequentially Hword as well. Moreover, It can be shown that

there is a regime of suitable gii to gie ratio where Hsymbol is maxi-

mized (Figure 7C). This trend is quite different from Hword, where

it increases almost monotonically with gii. Therefore, an increase

in the number of symbols is not the main mechanism behind

what we observed in Hword.

Therefore, we used yet another method for calculating en-

tropy, Hbinary . Here, if a neuron fires, it is labeled as ‘‘1,’’ while a

silent neuron is labeled ‘‘0’’ (Figure 7B). Each time the network re-

laxes into a steady state, it yields a distribution of 1s and 0s

across the neuron population, and the entropy for that distribu-

tion is calculated. Essentially, if the neurons’ firing rates are

more ‘‘all or nothing’’ (or ‘‘winner takes all’’) – so that the ratio
ience 28, 111718, February 21, 2025 9



Figure 7. Memory in a large network

(A) Schematic diagram of a large random network.

(B) Schematic diagram of how entropy is calcu-

lated. Each line represents the firing rate of a

neuron, and the firing rate of the neuron population

is defined as a ‘‘word.’’ The words across 100

trials form a probability mass function, which is

used to calculate Hword . The word itself is also a

probability mass function for different firing rates,

which also has an associated entropy. The trial

average of this entropy is called Hsymbol . Alterna-

tively, each neuron can be labeled as on (1) or

off (0), and the entropy associated with this is

called Hbinary .

(C) From left to right: Hword , Hsymbol , Hbinary for

different gii and gie.

(D) Firing rate traces for neurons across 3 trials,

with different synaptic weights. Each trial show-

cases how the steady state activity differs be-

tween having different gii values. Blue traces

represent excitatory neurons, and red traces

inhibitory neurons. From left to right: increasing gii .
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between the count of 1s and 0s ismore equal – thenHbinary will be

higher. Moreover, Hbinary is augmented as gii increases, which

follows a similar trend to Hword (Figure 7C), implying that the in-

crease in memory capacity as shown by Hword may be caused

by the neurons’ firing becoming more ‘‘all or nothing,’’ which is

in turns due to an increase in gii.

Furthermore, we note that for large gii values, its entropy value

is near maximal. That is, if all 100 trials result in unique states,

then Hword = log2
1

100z6:64, and we see that the entropy values

of large gii are near that value.

To conclude, increasing gii increases the number of memory

states the network contains. Consistent with how mutual inhibi-

tion introduces new bifurcations to the CRIREL circuit, mutual in-

hibition in a large network also complicates its dynamics and

yields a more computationally useful product. The large network

is also capable of performing other functions found in the

CRIREL circuit (Figure S3).

DISCUSSION

In the present study, we show that mutual inhibition plays a key

role in increasing the computation complexity and functional

repertoire. This is evident from: (1) motifs that contain mutual in-

hibition exhibit more functions than those without, (2) the ability

of a specific class of themotif, called CRIREL, to rapidly and flex-

ibly switch between multiple biologically relevant functions for

the same set of synaptic weights, and (3) higher workingmemory

capacity in large neural networks with mutual inhibition than

those without. We also demonstrate that the key mechanism un-

derlying the functionality of mutual inhibition lies in its ability to

increase the basins of attraction from an increase in the underly-

ing cusp bifurcations.
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It is not that networks lacking mutual in-

hibition, especially those with more neu-

rons, cannot perform the tasks described,

but rather that mutual inhibition expands
the repertoire of the motif. For example, feedback inhibition (motif

B) can support oscillatory solutions. However, the double cusp

bifurcation present in the CRIREL circuit allows for the coexis-

tence of oscillatory solutions and decision-like computations.

Therefore, we focus on the CRIREL motif to examine how it can

simultaneously encompass and switch between a diverse range

of functions.

Here, we specifically looked at one instantiation of CRIREL to

make finding and investigating functions more tractable. It turns

out that If a network is composed solely of diagonal connections

without straight connections, it essentially behaves as the same

circuit, as the network could be untwisted without altering its

function. However, in cases where both diagonal and straight

connections are present—forming an all-to-all connected

network with uniform synaptic weights—the network effectively

functions as a single inhibitory neuron. This observation led to

a focus on the CRIREL motif as an optimal representation of

mutual inhibition. One would surmise that a gradual transition

from the investigated structure to a fully connected network by

incrementally strengthening the diagonal connections, certain

network functions, such as decision-making and anti-synchro-

nized central pattern generators (CPGs), are likely to become

more challenging to achieve. Teasing out exactly the dynamics

of the diagonal coupling effect on decisions would be fascinating

for future work.

This is in line with past research, as connections between

inhibitory neurons have been shown in many different

contexts.1,2,5,31,33,34,37,39,43,44 It is interesting to note that in a

recent study6 that reconstructed single-cell level brain-wide con-

nectome of fruit flies,62–64 putative inhibitory neurons receive

more inhibitory than the excitatory inputs. Moreover, studies in

the hippocampus of rats have found a plethora of mutually



Table 1. Parameters for neuronal model and synaptic model

Spiking Neural Model Parameters

Parameter Value Parameter Value

Cm 0.5 (nF) tAMPA 2 (ms)

t 20 (ms) VAMPA 0 (mV)

EL �70 (mV) tGABA 5 (ms)

Vreset �55 (mV) VGABA �90 (mV)

VTh �50 (mV) – –
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inhibitory parvalbumin interneurons.43 Most Strikingly, the hu-

man cortex has a preponderance of inhibitory-to-inhibitory con-

nections compared to the mouse cortex.1 These findings imply

the importance of mutual inhibition in the brain network. We

have shown computationally that these types of connections

are useful and perform a unique role in computational processing

by expanding the number of computational states a network has.

We also hypothesize the existence of a function called anti-tog-

gle, that is capable of seamlessly switching between different

basins of attraction, which is potentially useful in tracking

changes of state, working memory based decisions, or even

counting. Furthermore, the existence of decisions and anti-tog-

gle in the inhibitory subnetwork could potentially be one mecha-

nism behind the simultaneous suppression and excitation of

inhibitory interneurons observed in various studies of cortical

neurons.4,5,44

Moreover, our results are in linewith studies that have reported

an increase in variability4,44 and working memory maintenance14

when the connection strength of inhibition is increased. In our

study, we showed that increases in gii are more responsible for

the increase in the number of steady states than gie. This tracks

with the presence of a multiple cusp bifurcation. As the large

network simulations showed, for each inhibitory neuron with

all-to-all inhibitory connections added, there is an additional

cusp bifurcation. This doubles the number of unique combina-

tions of states the network can perform.

Other domains of biology are also finding that mutual inhibition

(also called repression) is a key player. Recent studies in genetic

networks have shown gene networks are topologically organized

into groups that can mutually inhibit each other, and give rise to

distinct phenotype.65 Similar mutual inhibitory networks have

also been found in the immune system,66 and cell differentiation

networks.67 These works could suggest a role for mutual inhibi-

tion increasing information storage/functionality in domains

more general than neural architecture.

One area our research can be extended to is examining the

effects of gap junctions on the network. Some have found

that mutual inhibition and gap junctions tend to coexist in

some circuits.43 It has been shown that gap junctions have a

tendency to average out the winner-take-all aspect of the

decisions.68,69

A final direction for future work is to examine the best way to

control networks with mutual inhibition. Several studies have

suggested that networks near bifurcations are computationally

useful.12,26,58,59 Some studies use balanced inhibition to tune

the network to be useful.12 Here, we wonder if this process

can be used to control networks with mutual inhibition. If mutual
inhibition is removed, are these networks still computationally

useful?

To conclude, we have shown that mutual inhibition is key to

expanding the functionality of the network. This is possible

because mutual inhibition expands the number of cusp bifurca-

tions in a network. Ultimately, this helps elucidate why neural cir-

cuits in the brain are so flexible in their operation and are capable

of such rich dynamics.

Limitations of the study
In addition, in our study, we have mostly overlooked plastic syn-

apses. Several studies have shown that this is an important

component in network functionality.19,26,52,54,56 Moreover,

recent work has shown that synaptic depression can desegre-

gate different cusp bifurcations by weakening the strong synap-

tic effects between mutual excitatory loops.48,70 Aside from that,

by using plastic synapses, one can construct networks that are

both balanced and near bifurcations.12 In this article, different

functions require different synaptic weights. It is possible that a

motif circuit can switch between functions based on learning

or plasticity-induced weight changes. This can be a future direc-

tion of this study.
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Mathematica Wolfram Wolfram.com&SoftwareforPloting

Code – https://github.com/L24358/CRIREL
METHOD DETAILS

Spiking neural model and synaptic model
All simulations in this study are run on flysim.6 Each individual neuron was modeled as a leaky integrate-and-fire neuron:

Cm

dV

dt
= � Cm

t
ðV � ELÞ+

X
Isynj;r ðtÞ (Equation 5)

When V > VTh then V/Vreset; t/ t + treset (Equation 6)

where Cm is the capacitance, V the membrane potential, t is the time constant, EL the reversal potential, and Isynj the current from the

jth presynaptic neuron, and r represents the receptor. When the membrane potential reaches VTh, the neuron fires, and is promptly

reset to Vreset after an amount of time treset. The parameters can be found in Table 1.

Excitation ismodeled as an exponentially decaying AMPA receptor, while inhibition ismodeled as an exponentially decayingGABA

receptor. More precisely, we have excitatory and inhibitory currents given by

IrðtÞ = grsrðtÞðV � ErÞ

tr
dsr
dt

= � s+
X
tspike

dðtspike � tÞ

Here, r represents the receptor ðr ˛ fAMPA;GABAgÞ, I is the current of the receptor, V is the membrane potential, E is the reverse

potential, g is the conductance of the receptor, s is the gating variable for the receptor ion channel. s is governed by a linear ODEwith

time constant t, and is forced by a sum of Dirac delta impulses
P
tspike

dðtspike � tÞ, where tspike is the timing of presynaptic spikes. It is

important to note that gee = gAMPA when both pre and post synaptic neurons are excitatory and gei = gAMPA when the presynaptic

neuron is excitatory and postsynaptic neuron is inhibitory. Likewise, gii = gGABA when both pre and post synaptic neurons are inhib-

itory and gie = gGABA when the presynaptic neuron is inhibitory and postsynaptic neuron is excitatory.

CRIREL function simulations
The reduced model allowed us to predict the different functions the CRIREL circuit may be capable of performing. These functions

are actualized by simulation.While the reducedmodel is general for thewhole class of CRIREL circuits, the results we have shown are

simulated on one particular circuit (motif A in Figure 1B), with the exception of threshold-based filtering, which is simulated onmotif H

(Figure 6A). The parameters for simulation are listed in Table S3, and the stimulation is shown in the results section. Parameter

searches are illustrated in detail below.

Switch, toggle and anti-toggle

The robustnessof the functionsdetermineshow realistically theycanbe implemented in noisy biological systems. For switch, toggle and

anti-toggle, we swept through appropriate regimes to showcase its working parameter range (Figures 3C, 3F, and 4F). A pulse of a spe-

cific amplitude and duration was given to the circuit, in the samemanner as displayed in Figures 3A and 3D and Figure 4F, respectively.

If the circuit is turned on – defined as the mean firing rate larger than zero in the designated time period (200-400 ms) – and off –

defined as the mean firing rate equal to zero after 500 ms, then the circuit is deemed capable of performing switch/toggle within said

parameter set. Toggling is furthermore sensitive to the precise timing of the second pulse near the transition to toggling functionality,

which means that within certain parameter sets, the behavior of toggling is not robust when the onset or offset pulse timing varies.

Therefore, the onset of the pulse is varied from 500-505 ms, and the circuit is only labeled as capable of performing toggling if it tog-

gles for all 6 onset times.

Similarly, a parameter set is defined as performing anti-toggle if the designated neuron fires after the duration of the input ends, and

the other gradually returns to silence (evaluated by seeing if the designated neuron has a higher firing rate than the other).
e1 iScience 28, 111718, February 21, 2025
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For central pattern generators, the ability to adjust their firing period is essential (Figures 3I and 4I). This can be achieved bymodifying

its input into the inhibitory neurons. Again, the protocol mimics those of Figures 3G and 4G respectively. The ISI of the inhibitory neu-

rons is calculated by averaging all the ISIs within one simulation trial, while disregarding the initial ISI.

Decision-making

The psychometric function of the decision-making circuit is shown to quantify its accuracy and reaction time (Figure 4C). The input

difference 2c (%) is defined similarly to those of,8 where the input to one population (in our case, one inhibitory neuron) is 1+ c, and

the input for the other neuron is 1 � c, and c ranges from 0 to 1. Essentially, the larger the input difference, the easier the decision is to

make. The input lasts for 100 ms. The accuracy is defined as the number of correct trials over total trials, and in cases where no de-

cision is reached, the winning population is randomly assigned. The reaction time is defined as the time from which the stimulus be-

gins to the time when one population reaches the threshold firing rate of 200 Hz. In cases with no decisions, the reaction time is set at

2s. The mean reaction time is then calculated by averaging over all 500 trials.

Threshold-based filtering

By tuning the bias current of I1, the threshold of the filter can be adjusted. The stimulation used here is identical to those of Figure 6B.

The input ‘‘passes’’ the threshold when the maximum firing rate of E2 reaches 100 Hz within 100 ms after stimulation. Note that the

maximum passed input amplitude appears to be discrete because the input used in Figure 6B is discrete itself.

Coincidence and anti-coincidence detectors

Similar to howwe tested the working parameter range for switch and toggle, we swept through different pulse amplitudes and timing

differences for the coincidence and anti-coincidence detectors. A working parameter set is defined as the circuit firing according to

its truth table (1 for the firing rate larger than zero, and 0 for the firing rate equal to zero).

Large random network
To determine whether the flexibility of mutual inhibition is preserved in larger networks, we built a larger network and investigated a

specific function, memory. To construct the large network, we used 100 LIF neurons with the same membrane parameters as the

microcircuits. The excitatory population had 75 neurons, while the inhibitory population had 25 neurons. The parameters for connec-

tion probability and synaptic weights are given in Table S4.

Each excitatory neuron was given a random 500ms pulse with an amplitude drawn from a normal distribution withmean m = 3 and

variance, s2 = 3 in addition to an underlying bias current of -5 nA. After the pulse ended, we waited for an extra 1 s before giving a

reset signal of -20 nA to the excitatory neurons. Through this protocol, if the network is capable of sustainingmemory, then it will settle

into a random equilibriumpoint after the positive pulse is removed, and before the reset signal arrives. Three different types of entropy

are calculated to analyze the variety of memory states in the network.

Dynamical analysis
A reducedmodel was used to gain a deeper understanding of the dynamics of the CRIREL circuit. Here we derive the reducedmodel

that we use to organize our results. The reduced model allows us to conceptually understand what is occurring dynamically in the

spiking neural network. Furthermore, the intuition gained from the reduced model is invaluable, as any function found in the reduced

model can also be found in the spiking model for an appropriate set of parameters. This is a consequence of central manifold reduc-

tion. Note that this does not work in the converse direction, meaning there could be functions in the spiking model that are not in the

reduced model.

For further understanding of the statistical results, we reduced the CRIREL system into a two-dimensional model given by the

equations

t
dE

dt
= k�e � aeE +E3 � eaieI (Equation 7)

t
dI

dt
= k�i � aiI � I3 � eaeiE (Equation 8)

where, ae, ai, k
�
e, and k�i are the parameters of the cusp bifurcations. eaie and eaie are the coupling strengths between each subsystem.

The full derivation of the reducedmodel is given in the Supplementary Note. In this paper we only consider small e, and consider large

e out of the scope of this paper. The reducedmodel allows us to conceptually understand what is occurring dynamically in the spiking

neural network. Furthermore, the intuition gained from the reduced model is invaluable, as any function found in the reduced model

can also be found in the spiking model for an appropriate set of parameters. Note that this does not work in the converse direction,

meaning there could be functions in the spiking model that are not in the reduced model. This is especially apparent when e is not

small.

As a broad overview, we first begin by showing that the mutual excitatory loop and the mutual inhibitory loop each have a cusp

bifurcation. Then we prove that feedback inhibition cannot undergo a cusp bifurcation. Next, we show that when coupled together,

both cusps are maintained. Then finally, we work out the reduced model’s simple cubic form.
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Decoupled mutual excitation and mutual inhibition
We begin with a simple firing-rate model for the mutual excitation loop:

t
de1

dt
= � e1 + fðb + geee2Þ (Equation 9)

t
de2

dt
= � e2 + fðb + geee1Þ (Equation 10)

and mutual inhibition:

t
di1
dt

= � i1 + fðb � gii i2Þ (Equation 11)

t
di2
dt

= � i2 + fðb � gii i1Þ (Equation 12)

Here, e1, e2, i1, and i2 are the firing rates of the neurons, and t is a time constant. Our two bifurcation parameters are the bias current

b and the synaptic weight gee or gii, depending on the type of mutual connection. Because the LIF spiking model we use is a class 1

excitable neuron57 (it has a continuous input frequency curve), we assume that fðxÞ is monotonic, i.e., f 0ðxÞR0.

To begin, we need to find the cusp bifurcation point. A necessary condition of the bifurcation point is the point at which one of the

eigenvalues of the Jacobian is 0. Thus we calculate the Jacobians for our system at the equilibrium point (denoted with a * super-

script) and find:

Je =
1

t

 
� 1 geef

0�b+geee
�
2

�
geef

0�b+ geee
�
1

� � 1

!
(Equation 13)

and for inhibition:

Ji =
1

t

 
� 1 �giif

0�b � gii i
�
2

�
�giif

0�b � gii i
�
1

� � 1

!
(Equation 14)

Note here that f 0 is positive. Simplifying the notation and letting f 0xk = f 0ðb ±gxxx
�
kÞ

detðJeÞ =
1

t
det

 
� 1 geef

0
e2

geef
0
e1

� 1

!
=

1

t

�
1 � g2

eef
0
e1
f 0e2

�
= 0 (Equation 15)

detðJiÞ =
1

t
det

 
� 1 � giif

0
i2

�giif
0
i1

� 1

!
=

1

t

�
1 � g2

ii f
0
i1
f 0i2

�
= 0 (Equation 16)

Thus there will be at least a saddle node bifurcation whenever gee =
ffiffiffiffiffiffiffiffiffi

1
f 0e1 f

0
e2

q
or gii =

ffiffiffiffiffiffiffiffi
1

f 0i1 f
0
i2

q
.

Note that for feedback inhibition we cannot even have a saddle-node bifurcation. If we examine the firing-rate model

t
de1

dt
= � e1 + fðb � gii i1Þ (Equation 17)

t
di1
dt

= � i1 + fðb + geee1Þ (Equation 18)

we see that the Jacobi can never have a 0 eigenvalue.

detðJeiÞ =
1

t
det

 
� 1 �gief

0
i1

geif
0
e1

� 1

!
=

1

t

�
1 + geigief

0
e1
f 0i1

�
> 0 (Equation 19)

This is because all terms are restricted to be positive. Thus feedback inhibition can only have one stable fixed point.

The next step here to prove that we have a cusp bifurcation, and not just a saddle-node bifurcation, is to prove that the quadratic

part of the system degenerates. To do this we need to find a center manifold, expand along that manifold, and show that the

quadratic term can be zero. We begin by finding the center manifold for the two systems. This is a one-dimensional surface

such that e2 = Meðe1Þ and i2 = Miði1Þ.
e3 iScience 28, 111718, February 21, 2025
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We can calculate the manifold by noting that de2

dt
=

dMeðe1Þ
dt

=
dMe

de1

de1

dt
: (Equation 20)

and

di2
dt

=
dMiði1Þ

dt
=

dMi

di1

di1
dt

: (Equation 21)

Solving for Mi and Me gives us

dMe

de1

=
�Meðe1Þ+fðb+geee1Þ
� e1+fðb+geeMeðe1ÞÞ (Equation 22)

dMi

di1
=

�Miði1Þ+fðb � gii i1Þ
� i1+fðb � giiMiði1ÞÞ (Equation 23)

In this particular case the excitatory manifold is easier to algebraically determine the excitatory manifold, so we will proceed only

with the math for the excitatory subsystem here. The inhibitory center manifold Mi must be solved for numerically.

The excitatory manifold is solvable with the ansatz e2 = e1 = Meðe1Þ. Plugging this in gives us,

dMe

de1

=
� e1+fðb+geee1Þ
� e1+fðb+geee1Þ = 1 (Equation 24)

dMe

de1
= 1 can be solved very easily by separation of variables, giving us Meðe1Þ = e1, thereby proving that the ansatz is valid.

Continuing onward, we have the dynamics constrained on a one-dimensional manifold e : = Me andMðiÞ : = Mi. Here, we have

switched to e and MðiÞ to emphasize the fact that i is no longer in the same coordinates as i1 and i2.

t
de

dt
= � e+ fðb + geeeÞ (Equation 25)

t
di

dt
= � i + fðb � giiMðiÞÞ (Equation 26)

We can now expand this using a Taylor series.

t
de

dt
= � e� + fðb+geee

�Þ+ ðe � e�Þðgeef
0ðb+geee

�Þ � 1Þ

+
g2
ee

2
ðe � e�Þ2f 00ðb+geee

�Þ+g3
ee

6
ðe � e�Þ3f ð3Þðb+geee

�Þ+O
�
e4
� (Equation 27)

t
di

dt
= � i� + fðb � giiMði�ÞÞ+ ði � i�Þ½ � giiM

0ði�Þf 0ðb � giiMði�ÞÞ � 1�

+
g2
ii ði � i�Þ2

2

h
M0ði�Þ2f 00ðb � giiMði�ÞÞ+M00ði�Þf 0ðb � giiMði�ÞÞ

i
�g3

ii iði � i�Þ3
6

h
M0ði�Þ3f ð3Þðb � giiMði�ÞÞ+ 3M0ði�ÞM00ði�Þf 00ðb � giiMði�ÞÞ+Mð3Þði�Þf 0ðb � giiMði�ÞÞ

i
+O
�
i4
�

Using a change of variables, we can convert the above equations into two depressed cubics giving us

t
dbe
dt

= ke + ae be � be3

t
dbi
dt

= ki + aibi � bi3
where

be = e � f 00�
geef ð3Þ

� (Equation 28)
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ke =

8

�
3

4
ðfÞ
�
f ð3Þ
�2

+
1

40
ðf 00Þ3 � 27

50

�
f 0 � 1

gee

�
ðf 00Þ
�

g3
ee

�
f ð3Þ
�3

ae =

1

6

�
f ð3Þ
��

f 0 � 1

gee

�
� 1

4
ðf 00Þ2

3
�
g2
eef

ð3Þ
�2

bi = i � 1

gii

M0ði�Þ2f 00ðb � giiMði�ÞÞ � M00ði�Þf 0ðb � giiMði�ÞÞ
�M0ði�Þ3f ð3Þðb � giiMði�ÞÞ+3M0ði�ÞM00ði�Þf 00ðb � giiMði�ÞÞ � Mð3Þði�Þf 0ðb � giiMði�ÞÞ

ai =
1

g2
ii

Aiai

ai =
ð � M0ði�Þf 0ðb � giiMði�ÞÞ � 1Þ

18fðb � giiMði�ÞÞ2

Ai =
�
� M0ði�Þ3f ð3Þðb � giiMði�ÞÞ+ 3M0ði�ÞM00ði�Þf 00ðb � giiMði�ÞÞ

�Mð3Þði�Þf 0ðb � giiMði�ÞÞ � 1

4

�
M0ði�Þ2f 00ðb � giiMði�ÞÞ � M00ði�Þf 0ðb � giiMði�ÞÞ

�2
ki =

Ni

g3
ii di

Ni = 8
1

40

�
M0ði�Þ2f 00ðb � giiMði�ÞÞ � M00ði�Þf 0ðb � giiMði�ÞÞ

�3
� 27

50

�
� M0ði�Þf 0ðb � giiMði�ÞÞ � 1

gii

��
M0ði�Þ2f 00ðb � giiMði�ÞÞ � M00ði�Þf 0ðb � giiMði�ÞÞ

�
+
3

4
fðb � giiMði�ÞÞ

�
� M0ði�Þ3f ð3Þðb � giiMði�ÞÞ+3M0ði�ÞM00ði�Þf 00ðb � giiMði�ÞÞ � Mð3Þði�Þf 0ðb � giiMði�ÞÞ

�2
di =

�
� M0ði�Þ3f ð3Þðb � giiMði�ÞÞ+3M0ði�ÞM00ði�Þf 00ðb � giiMði�ÞÞ � Mð3Þði�Þf 0ðb � giiMði�ÞÞ

�2
(Equation 29)

Whenever ke, and ae, or ki, and ai are 0, then the two systems undergo a cusp bifurcation. While the exact values of the cusp bifur-

cation is complicated, especially in the case of the inhibitory system, it still can undergo the bifurcation.

Coupling mutual excitation with inhibition
Now that we have calculated the normal form for both subsystems, we can couple them together. We don’t need to explicitly use the

normal form at first. Rather its mere existence will be used later. We begin by introducing the coupling terms e. The corresponding

equation becomes

t
de1

dt
= � e1 + fðb + geee2 � ε½gieqi11i1 + gieqi12i2�Þ (Equation 30)

t
de2

dt
= � e2 + fðb + geee1 � e½gieqi21i1 + gieqi22i2�Þ (Equation 31)

t
di1
dt

= � i1 + fðb � gii i2 + e½geiqe11e1 + geiqe12e2�Þ (Equation 32)

t
di2
dt

= � i2 + fðb � gii i1 + e½geiqe21e1 + geiqe22e2�Þ (Equation 33)

Here, q2k1 + q2k2 = 1 and qkx > 0. This allows the coupling between the connections to be arbitrary. We can think of q as a way to

parameterize the asymmetries in synaptic weights between the coupling.
e5 iScience 28, 111718, February 21, 2025
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Next, by expanding the function f as a Taylor series with respect to e centered at e = 0, and then disregarding order e2 and above,

we get

t
de1

dt
= � e1 + fðbe + geee2Þ � ef 0ðbe + geee2Þðgieqi11i1 + gieqi12i2Þ (Equation 34)

t
de2

dt
= � e2 + fðbe + geee1Þ � ef 0ðbe + geee1Þðgieqi21i1 + gieqi22i2Þ (Equation 35)

t
di1
dt

= � i1 + fðbi � gii i2Þ+ ef 0ðbi � gii i2Þðgeiqe11e1 + geiqe12e2Þ (Equation 36)

t
di2
dt

= � i2 + fðbi � gii i1Þ+ ef 0ðbi � gii i1Þðgeiqe21e1 + geiqe22e2Þ (Equation 37)

We can thenmake the substitution for the stable attractive manifolds wemade above such that e = e2 = Mðe1Þ = e1 and i = i2 =

Miði1Þ.

t
de

dt
= � e + fðbe + geeeÞ � ef 0ðbe + geeeÞðgieðqi11 + qi21Þi + gieðqi12 + qi22ÞMiðiÞÞ (Equation 38)

t
di

dt
= � i + fðbi � giiMiðiÞÞ+ ef 0ðbi � giiMiðiÞÞðgeiðqe11 + qe21Þe + geiðqe12 + qe22ÞeÞ (Equation 39)

For ease of notation let qi1 = qi11 + qi21 and qi2 = qi12 + qi22, and qe1 = qe11 + qe21 and qe2 = qe12 + qe22 We can now expand the equa-

tion in terms of e and i giving us

t
de

dt
= � e� + fðb+geee

�Þ+ ðgeef
0ðb+geee

�Þ � 1Þ+g2
eeðe � e�Þ2

2
f 00ðb+geee

�Þ

+
g3
eeðe � e�Þ3

6
f ð3Þðb+geee

�Þ+O
�
e4
� � ef 0ðbe +geeeÞ

�
gieqi1 + gieqi2M

0
iðiÞ
�ði � i�Þ+O

�
i2
� (Equation 40)

t
di

dt
= � i� + fðb � giiMði�ÞÞ + ði � i�Þ½

� giiM
0ði�Þf 0ðb � giiMði�ÞÞ � 1�+g2

ii ði � i�Þ2
2

h
M0ði�Þ2f 00ðb � giiMði�ÞÞ + M00ði�Þf 0ðb � giiMði�ÞÞ

i
(Equation 41)

�g3
ii ði � i�Þ3

6

h
M0ði�Þ3f ð3Þðb � giiMði�ÞÞ + 3M0ði�ÞM00ði�Þf 00ðb � giiMði�ÞÞ + Mð3Þði�Þf 0ðb � giiMði�ÞÞ

i
(Equation 42)

+O
�
i4
�
+ ef 0ðbi � giiMiðiÞÞ

�
geiqe1 + geiqe2

�ðe � e�Þ+O
�
e2
�

(Equation 43)

Recall we can create a depressed cubic in the uncoupled system using Equations 28 and 29 to get

t
dE

dt
= keðb;geeÞ � aeðb;geeÞE � E3 � ðef 0ðbe + geee

�Þ�gieqi1 + gieqi2M
0
iði�Þ

�ðI + I�Þ (Equation 44)

t
dI

dt
= kiðb;geeÞ � aiðb; geeÞI � I3 + ef 0ðbi � giiMiði�ÞÞ

�
geiqe1 + geiqe2

� 
E +

f 00�
geef ð3Þ

�! (Equation 45)

where I� = 1
gii

M0ði�Þ2f 00ðb�giiMði�ÞÞ�M00 ði�Þf 0ðb�giiMði�ÞÞ
�M0ði�Þ3fð3Þðb�giiMði�ÞÞ+3M0ði�ÞM00ði�Þf 00ðb�giiMði�ÞÞ�Mð3Þði�Þf 0ðb�giiMði�ÞÞ from Equation 29. To clean everything up a bit, we can recast

our equations as

t
dE

dt
= k�e � aeE +E3 � eaieI (Equation 46)

t
dI

dt
= k�i � aiI � I3 � eaeiE (Equation 47)

where aie = gieqi1 +gieqi2M
0, aei = geiqe1 +geiqe2, k

�
e = ke +

f 00
ðgeefð3ÞÞ, and k�i = ki + I�.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Equilibrium points in microcircuits
It is conceivable that the functional repertoire of a motif is correlated to the abundance of its dynamical states. Here, we employ a

statistical approach that provides us an estimate of the number of equilibrium points in the relevant parameter space. We compared

motifs that are specifically chosen to highlight the presence or absence of recurrent loops, along with some randomly chosen feed-

forward motifs (Figure 1B). After sweeping through the parameter space, we then estimated the number of equilibrium points in each

trial by counting the number of clusters (Figure S1A).

Parameter space
For a four neuron motif, there are 12 possible synaptic connections. To lower dimensionality in parameters, we constrained synaptic

weights with the same type of pre-synaptic and post-synaptic neuron to have the same value, except for threshold-based filtering

(Figure 1A). Thus, we have four types of synaptic weights: excitatory-to-excitatory ðgeeÞ, excitatory-to-inhibitory ðgeiÞ, inhibitory-to-
inhibitory ðgiiÞ and inhibitory-to-excitatory ðgieÞ. For each motif, we ran simulations over 18900 trials, where each trial has a different

synaptic weight parameter set gee, gie, gii (Table S1).

Aside from synaptic weights, we also iterated through different underlying bias currents in the neurons. The bias currents

adjust the threshold for firing, allowing inhibitory neurons to fire in the absence of excitatory input (Table S1). This ensures

that we capture the dynamic states produced by the inhibitory neurons. For each trial, a brief injected current goes into different

pairs of neurons, for example one trial would stimulate E1 only, and another would stimulate E1 and I1 simultaneously. This is run

through all possible pairs. The amplitude of the stimulus changes as well. Both stimulating different pairs and varying the stim-

ulus amplitude ensure a wider exploration of the parameter space, thereby allowing us to find more equilibrium points. Each

brief pulse of positive stimulation is separated by a negative reset signal. These are shown in Figure S1B. Note that this method

may not capture every single equilibrium point present, nor will it be able to detect other stable structures such as limit cycles.

Nevertheless, the parameter sweeping still provides valuable information regarding the complexity of the dynamical states of

the system.

Clustering
To analyze the amount of equilibrium points present in each trial, we look at the firing rate trace of themotif across the four-dimension

space (e1, e2, i1, i2). The firing rate is calculated using a sliding window of 50 ms over spikes, and sampled at an interval of 10 ms. We

used the elbowmethod to obtain the number of clusters in the firing rate trace of the trial.71 The elbowmethod detects the number of

clusters by iterating through the possible number of clusters k and performing K-means clustering, and then evaluating each guess k

with its standard deviation, which is SSE =
Pk

i = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNi

j = 1
ðrij � riÞ2

Ni � 1

r
. By plotting SSE as a function of k, we see that sometimes the plot

has a sharp drop in SSE followed by a shallow decrease when k becomes large. The sharp drop is cleverly termed ‘‘the elbow’’ (Fig-

ure S1A). Such a sharp drop usually indicates that the number of clusters assigned has hit the correct amount. If no elbows are pre-

sent, then the data set most likely only has one cluster. A criterion is needed to determine ‘‘how sharp’’ a drop can be considered an

elbow, and these criteria is set so that the slope of the ‘‘arm’’ must be seven times the slope of the ‘‘forearm’’.

We purposely neglected the transient activities 100ms after a positive stimulation pulse or a negative reset signal in order to neglect

‘‘fake’’ clusters (i.e. clusters that are present, but are not true equilibrium points). Finally, the total number of equilibrium points in all

possible parameter sets, which total up to 18900 trials, are calculated for each motif for comparison.

CPG in microcircuits
Another important computation for small motifs is the ability to generate oscillations under constant input. Similar to how the equi-

librium points were counted, for CPGs, the parameter space was scanned across suitable values of gie and gei. For each trial, we

then determine whether the motif under said parameter set was capable of oscillation. The ISI for each trial was calculated, and

rounded to the nearest 0.001 (s). Since there is no noise in the system, the periodic firing of a neuron being driven by a constant

current has a near perfect period (where the slight differences were accounted for by the rounding procedure), and thus the ISI

would consist of one single value. The choice of rounding, 0.001 (s), is hence chosen so that when receiving a constant bias current

with no noise, the ISI will be 1 single value, as it should be. For any rounding numbers smaller than that, for example 0.0005 (s), such

trials will yield 2 or more ISI values, which is due to the time step choices of the simulator and does not really reflect whether the

motif is in a CPG mode. For CPGs, the ISI would contain two or more values. The counts for trials with CPGs were calculated for

each motif.

Decision-making and bistability
To further illustrate how feedback and mutual inhibition differ in terms of functions, we focused on two functions in particular: deci-

sion-making and bistability. We swept through the relevant parameter space, and observed whether motifs with or without mutual

inhibition could perform these two functions. Once again, to lower the dimensionality of the parameter space, we constrained
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synaptic weights with the same type of pre-synaptic and post-synaptic neuron to have the same value. For bistability, since it hap-

pens within the excitatory subsystem, the most crucial synaptic weight is gee. For decision-making in feedback inhibitory networks,

the important synaptic weight is gie, since strong gie allows the circuit to turn off the unfavorable excitatory neuron. For decision-mak-

ing in mutual inhibitory networks, the key synaptic weight is gii. Therefore, for the purpose of this analysis, we will hold gei constant

and sweep through relevant parameter regimes of gee, gie and gii. The parameters are listed in Table S2.

For each point (gee, gie, gii) in the parameter space, two trials with different input protocols are given to the network. The bistable

protocol gives a 100 ms positive pulse to one of the excitatory neurons, resets the circuit using a strong negative pulse, and repeats

this process for all of the excitatory neurons present within the network (Figure S2). If the network is capable of bistability, then the

pulse to one of the excitatory neurons should be able to turn the network to the ON state and remain there until the resetting pulse

comes in. Therefore, if the circuit stays on after E1 is excited, and also stays on after E2 is excited, then it is classified as being able to

perform the switch function.

The decision protocol iterates through all possible pairs of excitatory neurons, where for each time period, each pair is given an

asymmetrical input (Table S2). If the network decides, then there will be a difference in firing rate between a pair of neurons at

that time period. The condition for deciding is that the ‘‘winning’’ neuron (if one neuron’s time-averaged firing rate is 10 Hz larger

than the other, it is considered a winner) must switch as the relative input strength switches. For instance, if E1 wins when input 1

is larger than input 2, then E2 must win when input 2 is larger than input 1. For motif B, decision is made between the excitatory neu-

rons, hence the aforementioned analysis is performed on the two excitatory neurons. The decision is made between the inhibitory

neurons for motif A, hence the decision analysis here is performed on I1 and I2. Each point (gee, gie, gii) will be capable of either bist-

ability, quasi-decision, decision, both, or none. The results are then drawn into a heat map, where broader regions of ‘‘both functions

present’’ mean that it is more possible for the two functions to co-exist.

Entropy
For a discrete random variable X, where there are n potential outcomes xi;.xn with associated probability Pðx1Þ; .PðxnÞ, its
entropy is

HðXÞ = � Sn
i = 1PðxiÞlog PðxiÞ (Equation 48)
Entropy of words, Hword

After the pulse is turned off and before the reset signal arrives, each neuron i will have a different time-averaged firing rate ri = CriDt,
which represents the ‘‘state’’ the neuron is in for that particular equilibrium point. Together, these firing rates can form a sequence, i.e.

r1;r2;r3;.r100, which we call a ‘‘word’’. Each trial will produce one such word. If the memory network has multiple equilibrium points,

then the variation of words would be large, and the entropy resulting from such a distribution of words, Hword, would be large.

When calculating the entropy, what we actually used is the quotient of ri over 20. This is similar to grouping the firing rate into

different bins, where the firing rates within the same bin are assumed to carry the same amount of information. The choice of having

a 20 Hz bin is arbitrary – qualitatively similar results can be obtained by other bins, such as 30 Hz and 40 Hz as well.

Entropy of symbols, Hsymbol

A word r1; r2; r3;.r100 itself is a distribution of firing rates. The entropy of this distribution is called Hsymbol, which reflects how widely

distributed these firing rates are. For the word produced by each trial, its entropy of symbols is calculated, and then averaged across

trials.

Entropy of binary symbols, Hbinary

Instead of representing each neuron by its firing rate, we instead observe whether the neuron fires or not. If it fires, the neuron is given

a label li = 1, and li = 0 otherwise. This again forms a distribution across the neuron population, l1; l2; l3;.l100, and its associated

entropy is called Hbinary.
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